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In earlier studies of simulation plasmas the difference schemes for each step of the 
calculation have been analyzed, but their over-all performance taken together with 
plasma behavior has not been treated carefully. We begin with a rigorous treatment of 
the spatial grid, giving here a formulation which includes most codes now in use. This 
is done in such a way that the role of each step in the calculation is easily identified in 
the results, and also the expressions for plasma properties are easily compared with the 
corresponding “real” plasma properties. Details are given for the electrostatic case. 
The formulation is applied to the question of energy conservation, and to linear wave 
dispersion and instability. The effect of the spatial grid is to smooth the interaction force 
somewhat and to couple plasma perturbations to perturbations at other wavelengths, 
called aliases. The strength of the coupling depends on the smoothness of the inter- 
polation methods used. Its importance depends roughly on how well the plasma would 
respond, in the absence of the grid, to wavenumbers k - Z?r/Ax; e.g., if the Debye length 
is too small the coupling can destabilize plasma oscillations even in a thermal plasma. 

1. INTRODUCTION 

A study is under way to understand the physics of plasma simulation models, 
so that we may better design computer experiments and understand the results, 
especially where they may differ from real plasma. This work has involved almost 
no numerical analysis in the usual sense, in which different considerations of 
accuracy and speed are involved. For instance, the initial-value problem for 
ordinary differential equations has been extensively studied and a variety of 
very accurate algorithms are available. Such methods have been used, for example, 
for single-particle motion in the study of magnetic field configurations in fusion 
experiment devices. The methods used in many-particle simulation seem com- 
paratively crude and inaccurate. However what is important is not that individual 
particle orbits be accurate, but that the collective motions of many particles 
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reflect real plasma behavior. When computer time is limited, it has usually been 
better to use simple and fast difference algorithms rather than having to use 
fewer particles, say. Further, it is argued elsewhere [l-4] that a modified interaction 
force can lead to better simulation results than the Coulomb interaction. Even 
some errors in collective motions, for example oscillation frequencies, may be 
acceptable if one understands quantitatively their origin and consequences. 

On the other hand it is desirable that the codes retain certain physical properties. 
For instance, while many successful codes are not exactly time reversible, experience 
has shown often that unacceptable types of errors are avoided when one builds 
exact reversibility into the difference equations [5]. Similarly, making a smooth 
interaction force by using finite size particles interacting through the normal 
electromagnetic fields automatically avoids self-forces and nonphysical instabilities 
that can arise with other smooth interactions not physically motivated [2]. 

This paper presents a mathematical framework with which one can apply 
conventional plasma theory to simulation plasma using a spatial grid on which 
charge and current densities, and electromagnetic fields, are defined [4, 6,7]. The 
use of fields is almost universal even in the electrostatic approximation with simple 
geometry, rather than summing the Coulomb interaction over all particle pairs 
(except in the one-dimensional sheet models where the Coulomb force is a simple 
step function and the particles may be ordered). This paper is directed toward 
understanding the physical properties of simulation plasma rather than to develop- 
ment of new algorithms for the codes. 

Here we treat time as continuous, the rational for this being: it is possible 
to ignore the space-time grid completely by making it fine enough. This being so, 
one can study the consequences of finite At and finite dx separately, and should 
do so initially. In real codes, especially in three dimensions, it is easier to make 
At negligible than Ax; this is similar to the motivation in hydrodynamics for 
finite-difference schemes of much higher order in x than in t [8]. The condition 
for treating time as continuous is wmax dt < 1, with urnax the largest frequency 
of concern when d t -+ 0, assuming the time integration is stable numerically. 
It is usually true that wg At, w, At, etc., are small, but when X,/Ax is large, 
(@w At = (%I 4Gb/~ 1 x may not be small. However, a plasma does not 
respond well to frequencies >w, , wc , so that the grid noise may not need to be 
lower in frequency than At-l. The theory to follow will help answer this question 
of the domain of validity. 

The spatial grid is a simple example of a periodic spatial nonuniformity, and 
we begin with some remarks on the more general case of a plasma with nonuniform 
interaction. Then each step in the calculation of interactions through a spatial 
grid is studied (essentially to relate Fourier transforms of densities, forces and 
fields) with enough generality to include most codes. Next we consider energy 
conservation. Finally the formalism is applied to linear waves and instabilities. 
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2. THE EFFECTS OF A PERIODIC SPATIAL NONUNIFORMITY 

In this section we will make some general remarks about a plasma system 
whose interaction force has a spatial nonuniformity which is periodic and time- 
independent (e.g., a Fermi gas in a crystal, some electron beam devices). Later 
we will specialize to the grid problem. 

Let us consider the interaction force F(x, , xJ in one dimension, defined as 
the force on a particle at x2 due to a particle at x1 . In a normal physical system, 
which will be invariant under displacement, F depends only on the separation 
x = xp - x1 . However, in computer simulation using a spatial grid, invariance 
does not exist under all displacements (displacing particles but not the grid). 
Thus F also depends on X = -$(x1 + x2) as well as x. In most simulations a grid 
with constant spacing Ax is used; in this case F(X - ix, X + Qx), considered as a 
function of displacement X with separation x constant, is periodic with period Ax. 

In order to study the effect of the nonuniformity on a plasma, we need the 
Fourier transform of F(x, , xJ. For an infinite system we use a Fourier integral 
transform in x and a Fourier series in 2. 

F(z - ix, X + 3x) = jrn -$ eikx 2 ei’b’FD(k) 
-co ‘p---m (1) 

where k, = 27r/Ax is the grid wavenumber, and 

r;,(k) = j-m dx F,(x) e-ikr, 
-02 @a) 

(2b) 

This sign and normalization for the Fourier integral will be followed throughout. 
The properties of the plasma which are little affected by the lack of displacement 

invariance are expected to be similar to those of a plasma with two-particle force 
equal to the averaged force F,(x) [I, 21. We can analyze those properties by the 
gridless theory [2]. The difference SF = F - F,, is an unphysical grid force. In 
some respects it is like a “noise” force; however it is coherent with the plasma 
perturbation. More will be said about this later. 

For a particle density n(x) (time dependence is ignored for now), the force 
F(x) on a particle at x is 

F(x) = 1 dx’ F(x’, x) n(x’). 
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When transformed this becomes, using Eq. (l), 

J’(k) = f F,(k - id%) n&A 
p=--00 

where k, = k - pk, . We see that the effect of 6F (corresponding to the p # 0 
terms) is to couple density perturbations and forces at wavenumbers which d& 
by integral multiples of the grid wavenumber k, . Such wavenumbers are said to be 
aliases of one another [9]. 

As an illustration we will derive a dispersion relation for small amplitude 
plasma oscillations. Linearizing the Vlasov equation and adding time dependence 
exp(-iwt) to n and F, we find the density response n(k, w), of an unmagnetized 
uniform plasma, to the force field F(k, w) to be, in the usual notation 

where 

#(k, w> = 2 1 dv ,f$ i. _ kv , Im w > 0. (4) 

For Im w < 0 this must be analytically continued from the upper half w plane. 
Equations (3) and (4) may be combined to yield 

4k ~1 = $(k w> C f’,(k - bh) 4% ,o) P 
or, alternatively, 

If one replaces k by k, = k - qk, and p by p - q (q = 0, &l, fz,...), each set 
of equations may be written in infinite matrix form 

0 = c @m - F+-,(Hk, + k,l) v% ,4> n(k, , ~1, 
2, 

(5) 
0 = c @,a - FswW, + k,l) W, 3 WI> F@, 3 0). 

P 

We can now see several important features. 
The possible free oscillations of the plasma are given by the zeros of the deter- 

minant of either matrix. The presence of off-diagonal terms, due to the coupling 
together of many wavelengths, shows that the normal coordinates (in the termi- 
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nology of the small-oscillation problem in classical mechanics) for n and F are 
not the exponentials exp(ikg - iwt), but are some (as yet unknown) linear 
combinations of such exponentials, so that n or F varies as exp(ikx - iwt) times 
a periodic function of x with period dx (Bloch function). Thus we have brought 
our problem into the classical form [lo]. 

If / k I < 1 k, 1, one may expect thep = q = 0 element to be much the largest in 
the matrix. Also, if kOv, > c+, , i.e., Debye length hD = v&+ > Ax, we expect 
6 7 w) to be largest when p = 0. Therefore we have an approximate dispersion 
relation e0 = 0, where E,, = 1 - F,(k) #(k, w). This is exactly the same as we 
would get for a uniform system whose interaction force is F,, . The validity of 
this approximation will become clearer in Section 5. 

At this point it is best to make use of the simplification which results when the 
particle forces are found from a function defined on a discrete grid. Therefore 
we now analyze each step of the interaction calculation to interrelate the Fourier 
transforms of the several quantities. 

3. INTERACTIONS THROUGH A SPATIAL GRID 

A. The Grid Electric Field and Particle Force Field 

We define an electric field {Ej} on a discrete spatial grid whose j’th grid point 
is located at xj = j Ax (for simplicity we develop the principal results in an 
infinite one-dimensional system and generalize later). We can see easily the 
significance for the field of the aliases k, of k: for any p, exp(ik,x,) = exp(ikq). 
Thus the aliases are different wavenumbers which produce identical variations of 
grid quantities [g-11]. We will find that this equivalence simplifies the results 
of the last section. The appropriate Fourier transform is,l again temporarily 
suppressing time dependence, 

E(k) = AX 2 Ejesikxj. 
j=-m 

Note that E(k) is periodic, E(k,) = E(k). In the inverse transform we integrate 
over one period 

(7) 

1 Some expressions should be interpreted as generalized functions [12]. AU results are well 
behaved for finite systems; see Appendix I. 
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If necessary, we might choose this period to be 

j, dk = ,y;ka dk, 

which Brillouin calls the first zone [lo]. 
We derive the particle force field from the grid field by interpolation. 

F(x) = q c Ejwi(x). 
j 

(8) 

The weights wj are usually zero if / x - xj 1 is larger than 2 dx or so. If all the 
grid points are treated equivalently, the weights are shifted copies of each other 
and so may all be expressed in terms of the j = 0 weight 

Wj(X) = wo(x - Xi). (9) 

The transform of Eq. (8) is 

F(k) = 1 dx emik”q 1 wj(x) 1 F E(k’) eik”j 
B = 

w,(k) = q-W) dx 

= @(k) I(-4, 

where I(k) E w,,(-k)/dx is an interpolation function, and we have used Eqs. (7)- 
(9), the periodicity of E(k’), and the Poisson summation formula [12]. 

Now let the particles be finite size rigid “clouds” which pass freely through 
each other [6].2 Their charge density is spread out; qS(x) is the charge density 
of a cloud with total charge q whose “center” is at the origin [l, 21. If we use the 
interpolation of Eq. (8) to find the force on each element S(x’ - x) dx’ of a cloud 
whose center is at x, the total cloud force is 

F(x) = / dx’ S(x’ - x)q 2 E,w,(x’), 
i 

and the transform F(k) is Eq. (10) with the additional factor S(-k). It is convenient 
to introduce3 

Se(k) = Z(k) S(k) (11) 

B Historically there has been a tendency to separate the interpolation and particle size considera- 
tions. In [7] the particles are not considered finite in size and the whole matter is considered one of 
interpolation. In [6] the particles are considered to be square clouds and nearest-grid-point (NGP) 
interpolation is used for each elemental area of a cloud. Our discussion will at 6rst include both 
viewpoints, and later combine the two aspects. 

S The functions w,(x), S(x) and therefore also S,(x), are usually even, so that their transforms 
are real and even, but this is not assumed here. 
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the effective cloud shape in the grid-particle calculation, so that 

F(k) = q&(-k) E(k). (12) 

This form is like that of a gridless cloud plasma [2], and emphasizes the similar 
roles played by smoothing thought of as interpolation [7], and smoothing 
introduced by smearing out the particle [6]. In choosing the cloud viewpoint 
we keep in mind that the weights, and therefore S e , should satisfy certain condi- 
tions not required of Se in a gridless system, such as the normalization 

7 W&C) = 1 for all x. (13) 

Our discussion does not depend on this condition, but without it the force is not 
constant in space for a particle in a uniform field. 

It is interesting to examine this condition in transform space. Using the Poisson 
summation formula one can show that Eq. (13) implies conditions on Z(k) which 
are satisfied also by Se(k), since S(k = 0) = 1, namely: 

S,(k) = 1 for k = 0, 

= 0 for k = pks , P f 0. (14) 

Since E(k) is periodic, F will normally contain many wavelengths. This is just 
another way of saying F(x) is never sinusoidal. For a constant field Ej = E, we 
have E(k) = 237E 2 S(k,), and thus F(k) = 2aqE C &( -pk,) 6(k,). Because of 
Eq. (14) only one term survives, and F(k) = 2rrqE 8(k) as it should. 

For linear interpolation [6,7] one has C xjwj(x) = x, which means S,‘( pk,) = 0, 
i.e., the zeros of Se(k) at k = pk, are of order two. Then, for small k, &(k,), 
p # 0, is smaller, and therefore F(x) smoother, as expected, than when the 
interpolation is not at least linearly exact. 

In gridless models the zeros of S(k) for square clouds may make them seem 
unattractive 123; we see here that in a gridded model these zeros of Se(k) are 
beneficial. 

B. The Grid Charge Density and Particle Density 

The grid charge density for a zero-size particle at x is 

Although using the same weight function as for the force is not a necessary feature 
of this discussion, there are good reasons for doing so. Using a ditferent weight 
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function corresponds to using a different cloud shape, which can lead to a 
gravitation-like instability [2]. Also, if the difference equations relating pj to Ej 
are symmetric in space, use of the same weight function eliminates self-forces 
and ensures conservation of momentum. 

The normalization condition Eq. (13) makes the total charge on the grid, 
dx C pj , equal to the particle charge q. 

The transformed charge density for clouds is 

PW = 4 i &&J 4%) (16) p,--co 

where n is the density of cloud centers. It is here that the aliases become coupled 
through the grid. One can think of the infinite sum in this way: We are taking 
information defined on a continuum and trying to squeeze it onto a discrete grid. 
The difficulty shows itself here in that different particle wavelengths (aliases) 
appear the same at the grid points. 

The same phenomenon is familiar in the analysis of sampled time series [9]. 
If one does not sample often enough, differing frequencies become indistin- 
guishable. This can be improved by low-pass filtering the signal before sampling, 
and that is what one is doing here with a smooth S, . 

In simulation models the sampling effects are fed back into the system. A 
sinusoidal density perturbation produces forces with many wavelengths, which 
cause density perturbations at the new wavelengths, and all these perturbations 
act back on the original perturbations. 

Let us consider some common cases. The simplest interpolation satisfying 
Eq. (13) is nearest-grid-point (NGP), Fig. 1. When NGP is used with no further 
smoothing the effective cloud is as shown in Fig. 2 [4] and Se(k) = dif($k dx), 

Wj(X1 

x, -5 Ax xj +?nx 

FIG. 1. Nearest-grid-point interpolation weight function. 
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Ai' 

-iAX +Ax ' 

FIG. 2. The effective cloud for straightforward NGP [5]. This is also the square cloud S of [6]. 

where we have introduced the diffraction function 

which will arise frequently. 
When NGP interpolation is used for each element of a square cloud of width Ax 

(S like Se of Fig. 2; the usual CIC or “charge-sharing” case [6]) one has S = I 
and S, = difa(-& Ax), shown in Fig. 3, 

S&x) 

X 
-Ax Ax 

FIG. 3. The effective cloud for CIC of [6] and PIC [7]. 

In one dimension the area-weighting of PIC [7] is just linear interpolation 
(Fig. 4) and Se is the same as for the CIC case above. Thus PIC and this example 
of CIC are computationally identical, although there are important differences 
in viewpoint. 
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Wj(X) 

X 
Xl-Ax x,+Ax I 

FIG. 4. The weight function for one-dimensional PIC (linear interpolation). 

C. The Field Equations 

The relations between grid quantities may be written in a form that looks like 
the gridless case 

47v(k) = mw qw), (17) 

E(k) = -iK(k) d(k). (18) 

These relations then define K and K, which are therefore periodic. In a normal 
code at long wavelengths K M K FV k (but see, e.g., [13]). 

When the grid quantities are related by finite-difference formulas one can find 
the functions K and K simply by assuming the grid quantities vary as exp(ikxJ 
(like finding transfer functions in [l 11). For example, substituting & = 4 exp(ikx& 
and pi = p exp(ikxj) into the common Poisson difference equation 

yields K = k dif(+k AX). Similarly, Ei = -($j+l - $j-l)/(2 AX) yields K = k dif k AX. 
If, on the other hand, we use the fast Fourier transform [1414 to solve for the 

field, we can choose K and K freely (over one period in k space) to best achieve 
the desired physics, even though there may not be any reasonable corresponding 
finite-difference relation involving a small number of grid points. For instance, 
one can get more interaction smoothing, corresponding to widening the cloud, 
by truncating the k space here in some smooth manner. This is computationally 
cheaper than using a complicated grid-particle interpolation involving many grid 
points. At least in one dimension, the most economical way to get a smooth 
interaction without grid effects may be to use a fine mesh, NGP interpolation, 
and do the smoothing in k space as just described. Note that then E in the model 
corresponds more closely to F rather than E in the gridless cloud system. 

4 This review paper is very readable as well as containing information unavailable elsewhere. 
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We now have a complete formulation of interactions in most one-dimensional 
models. The generalization to 2 or 3 dimensions is given next. 

D. Generalization to More Dimensions 

The grid label j becomes a vector j = (j, , j, , jJ with integer components. The 
coordinate of grid point j is, in a three dimensional obliques grid, 

xi = j * Ax (19) 

where the rows of the tensor Ax are the basis vectors for the grid [15], defining 
the edges of a grid cell whose volume is 

Vc = det Ax. 

In the usual rectangular grid we have 

The transform becomes, for example, 

E(k) = V, c Eie-ik’xi. 
i 

For a point particle at x, 

F(x) = 4 c e(x) Ei 
i 

pj = + Wj(X) 
c 

WJX) = w,(x - Xi). 

For clouds the transforms are 

F(k) = q&(-k) E(k) 

(20) 

(6’) 

(8’) 

(15') 

(9’) 

(12’) 

W’) 

6 For instance, triangular meshes have also been used. 
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where 

Z(k) = +r w,(-k) 
c 

k,=k-p.k, (21) 

k, = 2n(Ax-l)= (22) 

and p is a vector with integer components. The rows of tensor k, are basis vectors, 
reciprocal [15] to those given by Ax, times 2~r. They define the periodicity of 
transforms of grid quantities, since 

exp(ik, * xj) = exp(ik . xi - 2&p * j) = exp(ik * xj). 

For a rectangular grid 
Ax-l 0 0 

k, = 237 0 dy-l 0 
t 

. 
0 0 AZ-1 1 

The integral in the inverse transform is taken over one period in k space. 

. 
Ei = jg $$ E(k) ezk 7 (7’) 

The forms taken in one, two, or three dimensions are simply seen if one remembers 
that ~fk/(27r)~ -+ &/(27~)~, where d is the dimensionality. 

The relations between transformed grid quantities are 

4vw = K20r> MG 

E(k) = -ix(k) I#(&). 

(17’) 

(18’) 

Quantities $j , E, , and pi are defined only on the grid, while n(x) and F(x) 
are defined on a continuum of particle positions. 

In our simplest example, the effective cloud for NGP becomes, in a three- 
dimensional rectangular grid, 

Se(k) = dif(& dx) dif(&, dy) dif(& dz). 

The field finite-difference equations, in their simplest generalization, yield 

K2 = kz2 dif2 $kk, Ax + ky2 dif2 &kk, Ay + ks2 dif2 $k, AZ 

and Kz = k, dif k, Ax, etc. 
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E. An Alternative Viewpoint 

Having seen how the product S, = IS arises naturally in both force and charge 
interpolation, we will not be surprised if it is simpler to deal with the grid-particle 
problem in terms of S, from the outset. The transforms of Eqs. (12’) and (16’) are 

F(x) = qvc c EjWx, - x) (23) 

pj = &(Xi - x) (24) 

for a cloud with center at x. The first expression may be regarded as the simplest 
discrete analogue to the continuum result q&(-x)* E(x) (where * denotes 
convolution) for a cloud with shape factor Se(x) [2]. The second expression is 
the continuum charge density for the cloud, sampled at the grid point, and is 
the same as pi(x) in [6]. 

In this viewpoint Hackney’s particles are squares with size equal to one grid 
cell (as he has already argued [4]), and the particles in CIC as normally used [6] 
and in PIC [7] are the convolution of two such squares (see [6, Fig. 61). 

Having drawn the gridded and gridless models as close together as possible, 
we recall however that the grid imposes on Se conditions such as Eq. (13), which 
is equivalent to 

VCp&(Xj -x) = 1. 
I 

This is automatically satisfied when S, is the convolution of several cloud S 
functions, at least one of which satisfies such a condition. 

4. ENERGY CONSERVATION 

We desire some combination of grid quantities which will function as a field 
energy. Two commonly used candidates are 

We quickly discover that either of these (they are normally unequal) when added 
to the kinetic energy does not give a constant, no matter how accurate the time 
integration may be. To see why the sum is not exactly constant, but is often 
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very nearly so, we express the rates of change in terms of the particle current 
density J and particle force F, again in one dimension: 

whereas 

$ K-E. = j”, $9 J(k) (27) 

which is sdx E * J for a real plasma. The integrands are equal only for k = 0. 
This cannot be corrected by redefining K and K because they must be periodic; 
e.g., we can define K = K = k only in the first zone, while the integrals are over 
all k. 

Although we see that energy is not conserved microscopically, in many simula- 
tions the observed macroscopic “total energy” changes by amounts small compared 
to other energies of importance. When this is so, our results suggest that most 
of the exchange of energy between fields and particles has taken place at long 
wavelengths. Since this is where the model most accurately simulates the plasma, 
a good energy check gives credibility to the simulation. 

Through a Lagrangian formulation, Lewis [16] has shown how to change 
the model so that there will be an exact energy constant (for exact time integration, 
rlt -+ O).6 We can find the modification by examining Eq. (26); if the transformed 
force is F = --ik&(-k) #(k) instead of Eq. (12’) then the integrand is identical 
to that of Eq. (27). This means that the force is derivable from the potential’ V 

v=qv&sse(xj-x)$bj. 
i 

6 Note that energy conservation does not imply numerical stability in plasma models. 
7 Note that deriving the force from a potential is not quite sutficient to ensure energy con- 

servation in artificial systems. The potential field depends on the particle positions {xi}, i.e., 
V = V(x; {xi}). The system conserves energy, and the energy is 

This is true in normal physical situations where, for instance, Vis a sum of two-particle interaction 
potentials which are even functions. 
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The grid electric field is not used. Lewis’s Lagrangian treatment prescribes the 
form of Poisson’s equation also, but we require only that Poisson’s equation be 
symmetric in space in deriving Eqs. (25) and (26). 

With this single modification the model is also Hamiltonian. As a result the 
theoretical description is simpler and formally closer to that of gridless plasmas [2]. 

However these codes do not conserve momentum, whereas the usual codes do. 
Furthermore, momentum is still conserved in some numerical methods of inte- 
grating the equations of motion, whereas in Lewis’s case it may be that energy 
conservation is less than in the usual models due to the effect of the less smooth 
forces on the accuracy of the time integration. 

The lack of momentum conservation becomes less important for large 
ND = nh, , the number of particles per Debye length. For instance the self force 
gives a slight jiggle in velocity dv < u for a thermal particle if (nX,)(hn/dx) > 1. 
However this condition may be required in all methods in order that fluctuations 
due to 6F have small enough amplitudes to be described by linear theory. 

Further study should be made of Lewis’s codes. 

5. LINEAR WAVE DISPERSION AND INSTA~ILI~ES 

If we use Eq. (12) in Eq. (5) we find for each row the same result 

so that E = 0 is the dispersion relation, where 

& w> = 1 - S&-k) c F,(k - &pk,) &(-k,) #(k, , w). 
2, 

The solutions w(k) are (multivalued) periodic functions of k. 
The same result may be obtained more directly by eliminating n, F, p, and 4 

from Eqs. (4), (12), and (16b(18) yielding the more useful expression 

E(k, w) = 1 + 
43riq2 
~2 K * c I Wk,)12 40, ,4, 

P 

where n(k, w) = (LQ, w) * F(k, w). The linear density response function # may be 
found from the relation + = k . a/wq2, where Q is the gridless real plasma con- 
ductivity tensor defined by J(k, w) = a& w) * E(k, u). 

The normal modes are given by a simple equation E = 0 rather than an infinite 
determinant because the aliases are equivalent for grid quantities. The normal 
modes are sinusoidal in space for grid quantities, though not for particle quantities 
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due to the alias coupling. In this respect the situation is like that for the vibrations 
of the atoms in a crystal rather than for wave propagation in a continuum having 
a periodic nonuniformity [lo]. 

We emphasize that the only approximation is that the linearized plasma response 
is used; no approximation is made about the smallness of the grid effects. 

The function E(k, w), for grid quantities, plays the usual role of dielectric function 
in kinetic theory results on fluctuations etc., to be reported in a later paper. 

For an unmagnetized electrostatic Vlasov plasma we have 

liv 
xl 

w+iO-kp.v K’?%y Imw>O 

which we will study in some detail for a Maxwellian velocity distribution with 
no drift. Then 

where Z is the plasma dispersion function [17]. 
When AD ,> dx the principal term is the one whose k, is nearest k. The modes 

are heavily damped when k differs much from this kD . In this case we expect no 
important interaction among the different aliases. In the first zone we would 
take only the p = 0 term, obtaining the average force F, dielectric function Q, 
discussed earlier. One could then view the model as approximately a gridless 
cloud plasma with Coulomb interaction; e.g., for the Maxwellian 

with 

where Sd is the cloud shape to be used in the dispersion relation (called Se in [l]). 
In Fig. 5 are shown solutions of these two dispersion relations for the Maxwellian 

in one dimension with Se = dif(&k dx) [4]. The difference between Im w in the 
two cases is too small to be shown on the graph, and Re o differs significantly 
only where the wave is heavily damped. Thus alias coupling is not very important 
here, and the averaged force works very well. This conclusion is stronger for 
CIC-PIC.8 

8 Some of these remarks may need qualification before application to models in which Landau 
damping and phase mixing of short wavelengths are inhibited, e.g., when all spatial variation is 
perpendicular to a strong steady magnetic field. 
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khx 

FIG. 5. Solutions of the exact and average-force dispersion relations for a Maxwellian velocity 
distribution with Ao = Ax and NGP interpolation [5]. 

An interesting qualitative difference introduced by the alias coupling is that 
for half the aliases kD has the opposite direction to H so that the factor K * kJk,,2 
has the wrong sign. For small k dx this can make w Im E negative, while 
wa Re Efaw remains positive, leading to an instability. In the jargon of real plasmas, 
the wave has positive energy and experiences negative absorption. The growth 
rate was negligible in Fig. 5 but becomes significant when h&lx is decreased, 
as we see in Fig. 6 for hn = 0.1 dx (2rrz4dx - o .). The averaged force description 

0.6. 
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FIG. 6. Solutions of the exact and average-force dispersion relations with ho = 0.1 Ax. 
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is not very good now. The maximum growth rate is about 0.1~~. If we go to 
CIC-PIC the alias coupling is weaker and the maximum growth rate is about 
0.014&l,. 

We have not yet studied this instability experimentally. There would probably 
be some difficulty in doing so without a very large number of particles to ensure 
that the linear approximation is not violated by too-large fluctuations and grid 
noise forces or that the instability is not damped by collisions. One wonders what 
an instability looks like in a plasma which is already Maxwellian. Perhaps it 
just gives enhanced fluctuations. These might cause a gradual heating of the 
plasma. This is not forbidden since the codes are not energy conserving. In the 
energy conserving codes the destabilizing factor K . k,/kp2 is absent, so that there 
is no grid-induced instability unless the plasma is drifting through the grid. 

6. CONCLUSIONS 

We have begun a mathematical description of many-particle simulation codes 
to supplement the present heuristic and pragmatic experimental criteria on which 
algorithm design has been based. This paper deals primarily with the spatial 
grid and its influence on plasma behavior. Applications are made to the question 
of energy conservation and to linear plasma oscillations. Here one sees how 
and when plasma properties, especially the lack of response to short-wavelength 
or high-frequency forces, help overcome the apparent inaccuracies of the algorithms 
to give model behavior which is at least qualitatively like that of real plasma. 
Our approach is applicable to other gridded models, e.g., in which E is defined 
on a separate interlaced grid whose points are at the centers of the cells of the grid 
for p and 4, or in which the fields are magnetic or electromagnetic. Qualitative 
features brought out in the general discussion of Section 2 may be expected to 
persist. While we can now obtain good understanding of the quantitative differences 
in short-term small amplitude plasma properties due to the simulation model, 
we cannot at present make much claim to even a good qualitative understanding 
of the modification of long-time or highly-nonlinear plasma evolution. However, 
where appropriate theory is available for real plasma, our formalism could be 
used to apply the theory to the model. Further study of the grid effects will be 
desirable as more ambitious simulations (e.g., three-dimensional models) force 
us to use very coarse grids. 

APPENDIX. FINITE PERIODIC SYSTEMS 

Let us see how to adapt the results of this paper to finite periodic systems. 
In one dimension, for simplicity, let all quantities have period L = N Ax; i.e., 
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a particle function satisfies P(x + L) = P(X) and a grid function satisfies 
Gj+N = Gj . The transforms P(k) and G(k) become sums of 6 functions and the 
inverse transforms are therefore sums also. The coefficients of the 6 functions 
are 27r/L times what one obtains by integrating or summing the transforms over 
only one period: 

P(k) = j: dx P(x) riks, 

N-l 
(A.1) 

G(k) = Ax 1 GjBikxj, 
j=O 

with k = 2nn/L, n = 0, f I, 52 ,... . In terms of the above new P(k) and G(k), 
the inverse transforms are 

P(X) = i 2 P(k) eikz, 
T&.=-a-J 

The first is of course the conventional Fourier series and the second is the finite 
discrete Fourier transform which is performed by the so-called fast Fourier 
transform algorithm [ 141. 

In summary the expressions for P(k) and G(k) differ from the infinite case only 
in the limits and in that they are evaluated only for k = 2m/L. The k integrals 
become sums according to the rule 

s dk 1 N-l 

g 5 - 1 n=O' c 

(A.3a) 

(A.3b) 

The periodicity in k of G(k) becomes a periodicity in n of length N. 
As an example, let us look at field energy fluctuations in an energy-conserving 

code. It can be shown that the energy density spatial fluctuation spectrum, for a 
Maxwellian velocity distribution not drifting through the grid, is formally identical 
to the gridless result 

(bdk = ; (1 - -i&l* 64) 
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This is normalized so that the average energy density is 

The average total field energy in the system is then 

according to our rule (A.3b). Thus (A.4) gives the average field energy per mode. 
(If the length of the system is doubled, the number of modes is also doubled, 
so that the average total field energy is doubled, as it should be.) 
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